Positive solutions for nonlinear singular superlinear elliptic equations
نویسندگان
چکیده
منابع مشابه
Positive Solutions for Elliptic Equations with Singular Nonlinearity
We study an elliptic boundary-value problem with singular nonlinearity via the method of monotone iteration scheme: −∆u(x) = f(x, u(x)), x ∈ Ω, u(x) = φ(x), x ∈ ∂Ω, where ∆ is the Laplacian operator, Ω is a bounded domain in RN , N ≥ 2, φ ≥ 0 may take the value 0 on ∂Ω, and f(x, s) is possibly singular near s = 0. We prove the existence and the uniqueness of positive solutions under a set of hy...
متن کاملPositive Solutions of Elliptic Equations with Singular Nonlinearity
In this paper, a nonlinear elliptic boundary value problem with singular nonlinearity Lu(x) = f(x, u(x)), x ∈ Ω, u(x) = φ(x), x ∈ ∂Ω, is studied, where L is a uniformly elliptic operator, Ω is a bounded domain in R , N ≥ 2, φ ≥ 0 may take the value 0 on ∂Ω, and f(x, s) is possibly singular near s = 0. Some results regarding the existence of positive solutions for the problem are given under a s...
متن کاملNonexistence of Positive Solutions for Some Fully Nonlinear Elliptic Equations
denote the kth elementary symmetric function, and let Γk denote the connected component of {λ ∈ R : σk(λ) > 0} containing the positive cone {λ ∈ R : λ1 > 0, · · · , λn > 0}. It is well known that Γk = {λ ∈ R : σl(λ) > 0, 1 ≤ l ≤ k}. Let S denote the set of n× n real symmetric matrices. For any A ∈ S we denote by λ(A) the eigenvalues of A. Throughout this note we will assume that Γ ⊂ R is an ope...
متن کاملSome remarks on singular solutions of nonlinear elliptic equations. I
We study strong maximum principles for singular solutions of nonlinear elliptic and degenerate elliptic equations of second order. An application is given on symmetry of positive solutions in a punctured ball using the method of moving planes. Mathematics Subject Classification (2000). 35J69, 58J05, 53C21, 35J60.
متن کاملSingular Solutions for some Semilinear Elliptic Equations
We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Positivity
سال: 2018
ISSN: 1385-1292,1572-9281
DOI: 10.1007/s11117-018-0636-8